For (I) and (II), intensities corrected for Lp; absorption corrections and secondary extinction not used; atomic scattering factors from SHELX76. Structures solved by direct methods with MULTAN11/ 84 (Main, Germain \& Woolfson, 1984), SHELX76 (Sheldrick, 1976), SHELXS86 (Sheldrick, 1986) and PLUTO (Motherwell \& Clegg, 1978).

Discussion. The refined atomic coordinates and isotropic temperature factors are presented in Table 1;* important bond distances and bond angles are given in Table 2; the molecular structures and the numbering of the atoms are shown in Fig. 1. The observed values of bond lengths and bond angles of the Boc group and urethane moiety are normal (Table 2). The bond lengths of the phenacyl $\mathrm{C}=\mathrm{O}$ in both molecules are similar $[\mathrm{C}(21)-\mathrm{O}(22)=1.225(6) \AA \quad(\mathrm{I}) ; \quad \mathrm{C}(14)-\mathrm{O}(15)=$ $1-222$ (5) \AA (II)]. The ester $\mathrm{C}=\mathrm{O}$ distances are slightly shorter $[\mathrm{C}(17)-\mathrm{O}(18)=1 \cdot 192(6) \AA(\mathrm{I}) ; \mathrm{C}(10)-\mathrm{O}(11)$ $=1 \cdot 194(5) \AA$ (II)]. This small difference between phenacyl and ester $\mathrm{C}=\mathrm{O}$ might be a result of the resonance effect of the phenyl ring. The urethane amide bond adopts the trans conformation for the two compounds with $\mathrm{O}(5)-\mathrm{C}(6)-\mathrm{N}(8)-\mathrm{C}(9)$ torsion angles of 174.4 (2) and $-178.4(2)^{\circ}$ respectively. The difference of dihedral angles might be due to the presence

[^0]of the phenylalanine side chain. In compound (I) the urethane $\mathrm{N}-\mathrm{H}$ forms an intermolecular hydrogen bond with the phenacyl $\mathrm{C}=\mathrm{O}$ of a neighbouring molecule $[\mathrm{O}(22) \cdots \mathrm{H}(8)=2.207(75) \AA]$. In compound (II) the crystals are stabilized by intermolecular bonds involving the urethane moieties $[O(7) \cdots H(8)=$ $2 \cdot 114(65) \AA$]. The preference of the phenacyl and urethane $\mathrm{C}=\mathrm{O}$ to participate in hydrogen bonding indicates that they are better hydrogen-bond acceptors than the ester $\mathrm{C}=\mathrm{O}$ group.

The trans amide linkage in the urethane moiety of both compounds places $\mathrm{O}(5)$ and $\mathrm{H}(8)$ in a cis arrangement with $\mathrm{O}(5)-\mathrm{H}(8)=2 \cdot 308$ (77) \AA in (I) and 2.250 (64) \AA in (II).

References

Findlay, J., Daljeet, J., Matsoukas, J. \& Moharir, Y. E. (1984). J. Nat. Prod. 47, 560-561.

Main, P., Germain, G. \& Woolfson, M. M. (1984). MULTANI1/84. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Matsoukas, J., Moharir, Y. E. \& Findlay, J. (1983). J. Nat. Prod. 46, 582-585.
Motherwell, W. D. S. \& Clegg, W. (1978). Pluto. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Nagasawa, T., Kuroiwa, K., Narita, K. \& Isowa, Y. (1973). Bull. Chem. Soc. Jpn, 46, 1269-1272.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany.
Stelakatos, A., Panagou, A. \& Zervas, L. (1966). J. Chem. Soc. C, pp. 1191-1199.

Structure of 2,3-Dibenzoyl-1-methylbicyclo[2.2.2]octa-2,5-diene

By Anuradha Mukhopadhyay and Siddhartiha Ray
X-ray Crystallography Laboratory, Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta - 700032, India
and Saswati Lahiri
Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta - 700032, India

(Received 9 March 1987; accepted 30 June 1987)

Abstract

C}_{23} \mathrm{H}_{20} \mathrm{O}_{2}, M_{r}=328.41\), monoclinic, $P 2_{1}$, $a=5.890$ (1),$b=13.910$ (2), $c=10.722$ (2) $\AA, \quad \beta=$ $101.01(2)^{\circ}, \quad V=862.27 \AA^{3}, \quad Z=2, \quad F(000)=348$, D_{m} (by flotation) $=1.257, D_{x}=1.265 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha$ radiation, $\lambda=0.7107 \AA, \mu=0.856 \mathrm{~cm}^{-1}, R=0.036$

for 1232 reflections with $I>2 \sigma(I)$. This structural study was aimed primarily at determining the conformation of the carbonyl groups. The structure could not be solved by a usual direct-methods program and a random phasing approach proved successful. Besides © 1987 International Union of Crystallography
the difference in conformation of the two carbonyl groups, an interesting feature, namely the indistinguishability of linkages of supposedly two types, $\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}$ and $\mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}$, was revealed by the structural study. This is explained in terms of a random static disorder involving the R and S isomers of the racemate material.

Introduction. The interest in the crystal structure of the title compound centres on the fact that the molecule (a) shows a selective reactivity at one of the carbonyl carbon atoms under UV irradiation. During the process of phototransformation there is apparently equal probability of abstraction of the phenyl moiety by either of the carbonyl oxygens. In that case the end product would contain a mixture of methyl 1-methyl-5-(1-phenoxy-1-phenylmethylene)bicyclo [2.2.2]oct-2-ene-6carboxylate (b) and its 5 -carboxylate isomer (c). The selective formation of the former product suggests either a restricted rotation around the $\mathrm{C}-\mathrm{CO}$ bond nearer to the bridged methyl group in the excited state, or a difference in conformation of the two carbonyl carbons. The structural study was conducted to decide between the two.

Experimental. Specimen size $0.5 \times 0.4 \times 0.25 \mathrm{~mm}$. Nonius CAD-4 diffractometer, graphite-monochromatized Mo $K \alpha$ radiation; 25 reflections ($10 \leq$ $\theta \leq 20^{\circ}$) for measuring lattice parameters: $\omega-2 \theta$ scan ranging from 1 to $25^{\circ} ; 0 \leq h \leq 7,0 \leq k \leq 16,-12 \leq$ $l \leq 12$. Two reflections (020 and 111) used as standards. No decay of intensity. 1569 reflections used for structure solution and 1232 of these with $I>2 \sigma(I)$ used for refinement. No absorption correction. The structure could not be solved by MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) and YZARC78 (Declercq, Germain, Baggro \& Woolfson, 1978) was used successfully. Least-squares refinement on F with y coordinate of Ol kept fixed. Atomic scattering factors from International Tables for X-ray Crystallography (1974). Eleven H atoms attached to the two benzene rings and C4 (Fig. 1) were placed in
calculated positions with isotropic temperature factor $B=4.0 \AA^{2}$. Bond distances C2-C3 and C7-C8 had nearly the same value ($\sim 1.42 \AA$), intermediate between a double $\mathrm{C}=\mathrm{C}$ and a single $\mathrm{C}-\mathrm{C}$ bond. Three positions of hydrogen (one trigonal and two tetrahedral) for each of the said four carbons were calculated. A difference Fourier map showed positive electron density clouds at each of these 12 calculated positions; $\frac{1}{2} \mathrm{H}$ was assumed at each. One methyl hydrogen was located from a difference Fourier map and two others calculated. The weighting scheme was $w=\left[\sigma_{c}^{2}(F)+0.000625 F^{2}\right]^{-1}$ where $\sigma_{c}(F)$ was based on counting statistics. Refinement converged $\left[(\Delta / \sigma)_{\max }=0.610\right]$ at $R=0.036$, $w R=0.041$ with $S=1.004$. Final difference Fourier map showed max. and min. peak heights of 0.1 and $-0.2 \mathrm{e}^{\AA} \AA^{-3}$ respectively. All calculations carried out on Burroughs 6700 computer; XRAY ARC program system (World List of Crystallographic Computer Programs, 1973) locally adapted for the B6700.

Discussion. The refined positional parameters of the non-hydrogen atoms are presented in Table 1. Bond distances and angles are given in Table 2.* The view of the molecule projected down the a axis (Fig. 1) clearly shows that while C17=O2 is s-trans with respect to $\mathrm{C} 5=06, \mathrm{C} 10=\mathrm{O} 1$ is in an s-cis conformation. Such a difference in disposition is also evident from the values of the torsion angles $\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 614 \cdot 8$, $\mathrm{O} 2-$ C17-C6-C5 $-100 \cdot 5^{\circ}$. This difference in conformation of the two carbonyls allows a favourable overlap of O 1 and C18, thereby minimizing the energy

[^1]

Fig. 1. An asymmetric unit of the structure viewed down the a axis.

Table 1. Final positional parameters for non-hydrogen atoms with e.s.d.'s in parentheses and their equivalent isotropic temperature factors

	$B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$			
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
	$0.1949(4)$	0.4019^{*}	$0.5644(2)$	4.410
O1	$0.3369(4)$	$0.4786(2)$	$0.8458(2)$	4.581
O2	$0.6685(5)$	$0.6215(2)$	$0.7342(2)$	3.684
C1	$0.5114(6)$	$0.7094(2)$	$0.7011(3)$	4.054
C2	$0.4113(5)$	$0.7145(2)$	$0.5690(3)$	4.026
C3	$0.4871(5)$	$0.6299(2)$	$0.4957(3)$	3.668
C4	$0.4279(4)$	$0.5385(2)$	$0.5595(2)$	2.862
C5	$0.5193(4)$	$0.5352(2)$	$0.6839(2)$	2.944
C6	$0.7512(5)$	$0.6358(2)$	$0.5178(3)$	4.309
C7	$0.8506(5)$	$0.6306(3)$	$0.6490(3)$	4.410
C8	$0.7824(5)$	$0.6173(3)$	$0.8736(3)$	5.484
C9	$0.2758(4)$	$0.4598(2)$	$0.4989(2)$	3.082
C10	$0.2201(5)$	$0.4483(2)$	$0.3575(2)$	3.066
C11	$0.3765(5)$	$0.4712(2)$	$0.2792(2)$	3.500
C12	$0.3176(6)$	$0.4535(2)$	$0.1489(3)$	4.099
C13	$0.1085(6)$	$0.4144(3)$	$0.0974(2)$	4.653
C14	$0.0458(6)$	$0.3912(3)$	$0.1731(3)$	4.932
C15	$0.0097(5)$	$0.4074(3)$	$0.3035(2)$	3.993
C16	$0.4743(5)$	$0.4600(2)$	$0.7763(2)$	3.127
C17	$0.6116(5)$	$0.3698(2)$	$0.7911(2)$	3.065
C18	$0.7978(5)$	$0.3580(2)$	$0.7299(2)$	3.443
C19	$0.9318(5)$	$0.2758(2)$	$0.7497(3)$	3.891
C20	$0.8796(5)$	$0.2044(2)$	$0.8284(3)$	4.137
C21	$0.6937(6)$	$0.2152(2)$	$0.8902(3)$	4.391
C22	$0.5601(5)$	$0.2975(2)$	$0.8715(2)$	3.673
C23				

* This parameter was held fixed to define the origin.
requirement for the dissipation of the excited-state energy by abstraction of the phenyl moiety. On the other hand, the interaction between O 2 and C 11 would need rotations about the $\mathrm{C} 10-\mathrm{C} 5$ and C17-C6 bonds and is thus expected to be less favourable in terms of energy. Hence the selectivity in the phototransformation of the molecule is evidently brought about by the conformational factor only.

An interesting feature of the structure is that the two bonds C2-C3 and C7-C8 are of the same length, intermediate between a $\mathrm{C}-\mathrm{C}$ single and a $\mathrm{C}=\mathrm{C}$ double bond; further, with each of these four C atoms are associated three H positions, two tetrahedral and one trigonal, each being occupied by $\frac{1}{2} \mathrm{H}$. Thus the two linkages $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 4$, one of which is supposed to be of the type $\mathrm{C}-\mathrm{CH}_{2}-$ $\mathrm{CH}_{2}-\mathrm{C}$ and the other of type $\mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}$, appear to be indistinguishable, each behaving like an average of the two types. This may be explained as the effect of a random static disorder in the crystal structure. There is evidently a random distribution of an equal number of two isomers, respectively R and S with respect to C1, in the structure. In the former we have $\mathrm{C} 2=\mathrm{C} 3$ and C7-C8; the situation is reversed in the latter. Each of the positions determined for the four atoms C2, C3, C7, C 8 is an average for a pair of $\frac{1}{2} \mathrm{C}$. This fact is revealed by the higher values of $B_{\text {eq }}$ for these four atoms in comparison with those of the other four atoms $\mathrm{C} 1, \mathrm{C} 4$, C5, C6 of the skeleton.

The authors are grateful to Dr D. K. Nag of the Geological Survey of India for kindly collecting the intensity data. They also extend their thanks to Dr Subrata Roy of the Regional Computer Centre, Calcutta, for help in adpating the program YZARC78 to the Burroughs B6700 at RCC. Part of the computational expense was met by Professor U. R. Ghatak, Head of the Department of Organic Chemistry, IACS, under the Department of Science and Technology (Government of India) project No. 23 (3p-8)/81-STP-II, which is gratefully acknowledged. The authors also express their gratitude to Professor James Trotter for his valuable suggestions.

References

Declercq, J.-P., Germain, G., Baggio, R. \& Woolfson, M. M. (1978). YZARC78. A Random Approach to Crystal Structure Determination. Univs. of Louvain, Belgium, and York, England. International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTan78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
World List of Crystallographic Computer Programs (1973). J. Appl. Cryst. 6, 309-346.

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, and bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44164 (18 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Tables of observed and calculated structure factors, anisotropic thermal parameters and coordinates of the H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44203 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

